Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | \(-h_{6}-1/2h_{5}+3/2h_{4}+1/2h_{3}+h_{1}\) | \(g_{25}\) | \(g_{26}\) | \(g_{36}\) | \(g_{14}+g_{13}\) | \(g_{15}\) | \(g_{19}\) | \(g_{23}\) |
weight | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(2\omega_{2}+\omega_{3}\) | \(2\omega_{2}+\omega_{3}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(\omega_{1}-12\psi\) | \(\omega_{1}+12\psi\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(2\omega_{2}+\omega_{3}-6\psi\) | \(2\omega_{2}+\omega_{3}+6\psi\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{\omega_{1}-12\psi} \) → (1, 0, 0, -12) | \(\displaystyle V_{\omega_{1}+12\psi} \) → (1, 0, 0, 12) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2, 0) | \(\displaystyle V_{2\omega_{2}+\omega_{3}-6\psi} \) → (0, 2, 1, -6) | \(\displaystyle V_{2\omega_{2}+\omega_{3}+6\psi} \) → (0, 2, 1, 6) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
|
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(0\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(0\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(2\omega_{2}\) \(-2\omega_{1}+4\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(2\omega_{1}-4\omega_{2}\) \(-2\omega_{2}\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{3}\) \(2\omega_{2}-\omega_{3}\) \(-\omega_{1}+2\omega_{2}+\omega_{3}\) \(2\omega_{1}-2\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(\omega_{3}\) \(2\omega_{1}-2\omega_{2}-\omega_{3}\) \(-2\omega_{1}+2\omega_{2}+\omega_{3}\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(-\omega_{3}\) \(-\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(-2\omega_{1}+2\omega_{2}-\omega_{3}\) \(\omega_{1}-2\omega_{2}-\omega_{3}\) \(-2\omega_{2}+\omega_{3}\) \(-\omega_{1}-\omega_{3}\) \(-2\omega_{2}-\omega_{3}\) | \(2\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{3}\) \(2\omega_{2}-\omega_{3}\) \(-\omega_{1}+2\omega_{2}+\omega_{3}\) \(2\omega_{1}-2\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(\omega_{3}\) \(2\omega_{1}-2\omega_{2}-\omega_{3}\) \(-2\omega_{1}+2\omega_{2}+\omega_{3}\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(-\omega_{3}\) \(-\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(-2\omega_{1}+2\omega_{2}-\omega_{3}\) \(\omega_{1}-2\omega_{2}-\omega_{3}\) \(-2\omega_{2}+\omega_{3}\) \(-\omega_{1}-\omega_{3}\) \(-2\omega_{2}-\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}-12\psi\) \(-\omega_{1}+2\omega_{2}-12\psi\) \(-12\psi\) \(\omega_{1}-2\omega_{2}-12\psi\) \(-\omega_{1}-12\psi\) | \(\omega_{1}+12\psi\) \(-\omega_{1}+2\omega_{2}+12\psi\) \(12\psi\) \(\omega_{1}-2\omega_{2}+12\psi\) \(-\omega_{1}+12\psi\) | \(2\omega_{1}\) \(2\omega_{2}\) \(-2\omega_{1}+4\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(2\omega_{1}-4\omega_{2}\) \(-2\omega_{2}\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{2}+\omega_{3}-6\psi\) \(\omega_{1}+\omega_{3}-6\psi\) \(2\omega_{2}-\omega_{3}-6\psi\) \(-\omega_{1}+2\omega_{2}+\omega_{3}-6\psi\) \(2\omega_{1}-2\omega_{2}+\omega_{3}-6\psi\) \(\omega_{1}-\omega_{3}-6\psi\) \(\omega_{3}-6\psi\) \(-\omega_{1}+2\omega_{2}-\omega_{3}-6\psi\) \(\omega_{3}-6\psi\) \(2\omega_{1}-2\omega_{2}-\omega_{3}-6\psi\) \(-2\omega_{1}+2\omega_{2}+\omega_{3}-6\psi\) \(\omega_{1}-2\omega_{2}+\omega_{3}-6\psi\) \(-\omega_{3}-6\psi\) \(-\omega_{3}-6\psi\) \(-\omega_{1}+\omega_{3}-6\psi\) \(-2\omega_{1}+2\omega_{2}-\omega_{3}-6\psi\) \(\omega_{1}-2\omega_{2}-\omega_{3}-6\psi\) \(-2\omega_{2}+\omega_{3}-6\psi\) \(-\omega_{1}-\omega_{3}-6\psi\) \(-2\omega_{2}-\omega_{3}-6\psi\) | \(2\omega_{2}+\omega_{3}+6\psi\) \(\omega_{1}+\omega_{3}+6\psi\) \(2\omega_{2}-\omega_{3}+6\psi\) \(-\omega_{1}+2\omega_{2}+\omega_{3}+6\psi\) \(2\omega_{1}-2\omega_{2}+\omega_{3}+6\psi\) \(\omega_{1}-\omega_{3}+6\psi\) \(\omega_{3}+6\psi\) \(-\omega_{1}+2\omega_{2}-\omega_{3}+6\psi\) \(\omega_{3}+6\psi\) \(2\omega_{1}-2\omega_{2}-\omega_{3}+6\psi\) \(-2\omega_{1}+2\omega_{2}+\omega_{3}+6\psi\) \(\omega_{1}-2\omega_{2}+\omega_{3}+6\psi\) \(-\omega_{3}+6\psi\) \(-\omega_{3}+6\psi\) \(-\omega_{1}+\omega_{3}+6\psi\) \(-2\omega_{1}+2\omega_{2}-\omega_{3}+6\psi\) \(\omega_{1}-2\omega_{2}-\omega_{3}+6\psi\) \(-2\omega_{2}+\omega_{3}+6\psi\) \(-\omega_{1}-\omega_{3}+6\psi\) \(-2\omega_{2}-\omega_{3}+6\psi\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{-\omega_{1}+2\omega_{2}-12\psi}\oplus M_{\omega_{1}-12\psi}\oplus M_{-12\psi}\oplus M_{-\omega_{1}-12\psi}\oplus M_{\omega_{1}-2\omega_{2}-12\psi}\) | \(\displaystyle M_{-\omega_{1}+2\omega_{2}+12\psi}\oplus M_{\omega_{1}+12\psi}\oplus M_{12\psi}\oplus M_{-\omega_{1}+12\psi}\oplus M_{\omega_{1}-2\omega_{2}+12\psi}\) | \(\displaystyle M_{-2\omega_{1}+4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}} \oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}} \oplus M_{2\omega_{1}-4\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{2}+\omega_{3}-6\psi}\oplus M_{-\omega_{1}+2\omega_{2}+\omega_{3}-6\psi}\oplus M_{\omega_{1}+\omega_{3}-6\psi} \oplus M_{-2\omega_{1}+2\omega_{2}+\omega_{3}-6\psi}\oplus 2M_{\omega_{3}-6\psi}\oplus M_{2\omega_{1}-2\omega_{2}+\omega_{3}-6\psi} \oplus M_{2\omega_{2}-\omega_{3}-6\psi}\oplus M_{-\omega_{1}+\omega_{3}-6\psi}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}-6\psi} \oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}-6\psi}\oplus M_{\omega_{1}-\omega_{3}-6\psi}\oplus M_{-2\omega_{2}+\omega_{3}-6\psi} \oplus M_{-2\omega_{1}+2\omega_{2}-\omega_{3}-6\psi}\oplus 2M_{-\omega_{3}-6\psi}\oplus M_{2\omega_{1}-2\omega_{2}-\omega_{3}-6\psi} \oplus M_{-\omega_{1}-\omega_{3}-6\psi}\oplus M_{\omega_{1}-2\omega_{2}-\omega_{3}-6\psi}\oplus M_{-2\omega_{2}-\omega_{3}-6\psi}\) | \(\displaystyle M_{2\omega_{2}+\omega_{3}+6\psi}\oplus M_{-\omega_{1}+2\omega_{2}+\omega_{3}+6\psi}\oplus M_{\omega_{1}+\omega_{3}+6\psi} \oplus M_{-2\omega_{1}+2\omega_{2}+\omega_{3}+6\psi}\oplus 2M_{\omega_{3}+6\psi}\oplus M_{2\omega_{1}-2\omega_{2}+\omega_{3}+6\psi} \oplus M_{2\omega_{2}-\omega_{3}+6\psi}\oplus M_{-\omega_{1}+\omega_{3}+6\psi}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}+6\psi} \oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}+6\psi}\oplus M_{\omega_{1}-\omega_{3}+6\psi}\oplus M_{-2\omega_{2}+\omega_{3}+6\psi} \oplus M_{-2\omega_{1}+2\omega_{2}-\omega_{3}+6\psi}\oplus 2M_{-\omega_{3}+6\psi}\oplus M_{2\omega_{1}-2\omega_{2}-\omega_{3}+6\psi} \oplus M_{-\omega_{1}-\omega_{3}+6\psi}\oplus M_{\omega_{1}-2\omega_{2}-\omega_{3}+6\psi}\oplus M_{-2\omega_{2}-\omega_{3}+6\psi}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{-\omega_{1}+2\omega_{2}-12\psi}\oplus M_{\omega_{1}-12\psi}\oplus M_{-12\psi}\oplus M_{-\omega_{1}-12\psi}\oplus M_{\omega_{1}-2\omega_{2}-12\psi}\) | \(\displaystyle M_{-\omega_{1}+2\omega_{2}+12\psi}\oplus M_{\omega_{1}+12\psi}\oplus M_{12\psi}\oplus M_{-\omega_{1}+12\psi}\oplus M_{\omega_{1}-2\omega_{2}+12\psi}\) | \(\displaystyle M_{-2\omega_{1}+4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}} \oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}} \oplus M_{2\omega_{1}-4\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{2}+\omega_{3}-6\psi}\oplus M_{-\omega_{1}+2\omega_{2}+\omega_{3}-6\psi}\oplus M_{\omega_{1}+\omega_{3}-6\psi} \oplus M_{-2\omega_{1}+2\omega_{2}+\omega_{3}-6\psi}\oplus 2M_{\omega_{3}-6\psi}\oplus M_{2\omega_{1}-2\omega_{2}+\omega_{3}-6\psi} \oplus M_{2\omega_{2}-\omega_{3}-6\psi}\oplus M_{-\omega_{1}+\omega_{3}-6\psi}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}-6\psi} \oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}-6\psi}\oplus M_{\omega_{1}-\omega_{3}-6\psi}\oplus M_{-2\omega_{2}+\omega_{3}-6\psi} \oplus M_{-2\omega_{1}+2\omega_{2}-\omega_{3}-6\psi}\oplus 2M_{-\omega_{3}-6\psi}\oplus M_{2\omega_{1}-2\omega_{2}-\omega_{3}-6\psi} \oplus M_{-\omega_{1}-\omega_{3}-6\psi}\oplus M_{\omega_{1}-2\omega_{2}-\omega_{3}-6\psi}\oplus M_{-2\omega_{2}-\omega_{3}-6\psi}\) | \(\displaystyle M_{2\omega_{2}+\omega_{3}+6\psi}\oplus M_{-\omega_{1}+2\omega_{2}+\omega_{3}+6\psi}\oplus M_{\omega_{1}+\omega_{3}+6\psi} \oplus M_{-2\omega_{1}+2\omega_{2}+\omega_{3}+6\psi}\oplus 2M_{\omega_{3}+6\psi}\oplus M_{2\omega_{1}-2\omega_{2}+\omega_{3}+6\psi} \oplus M_{2\omega_{2}-\omega_{3}+6\psi}\oplus M_{-\omega_{1}+\omega_{3}+6\psi}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}+6\psi} \oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}+6\psi}\oplus M_{\omega_{1}-\omega_{3}+6\psi}\oplus M_{-2\omega_{2}+\omega_{3}+6\psi} \oplus M_{-2\omega_{1}+2\omega_{2}-\omega_{3}+6\psi}\oplus 2M_{-\omega_{3}+6\psi}\oplus M_{2\omega_{1}-2\omega_{2}-\omega_{3}+6\psi} \oplus M_{-\omega_{1}-\omega_{3}+6\psi}\oplus M_{\omega_{1}-2\omega_{2}-\omega_{3}+6\psi}\oplus M_{-2\omega_{2}-\omega_{3}+6\psi}\) |
2 & | -1 & | 0\\ |
-1 & | 1 & | 0\\ |
0 & | 0 & | 2\\ |